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The inviscid instability of Stokes layers is investigated. The Stokes layer is shown
to support inviscid Floquet modes at sufficiently high values of the disturbance
wavenumbers. Other non-Floquet modes are investigated and are shown to be the
likely cause for instability in Stokes layers. These modes intersect with a viscous
continuous spectrum of disturbances and it is this interaction which enables free-
stream disturbances to penetrate into the boundary layer and amplify exponentially.
The relevance of the inviscid theory to previous viscous instability calculations for
Stokes layers is discussed.

1. Introduction
The Stokes layer induced by a rigid wall oscillating transversely in a viscous fluid is

one of the few exact solutions of the unsteady Navier–Stokes equations. For a general
unsteady flow, the concept of instability is only well defined if the flow varies slowly
in time. However, if the unsteady flow is periodic in time we can use Floquet theory
to give a clear definition of what we mean by instability. In the situation where the
unsteady flow varies slowly and is also periodic then the stability problem can be
tackled by both Floquet and local (WKB) methods. The Stokes layer at high values
of the Reynolds number is one such flow and it is that limit with which we concern
ourselves here. The relationship, if any, between local and Floquet modes is a major
part of this investigation.

The first investigation of the Stokes layer instability problem is due to von Kerczek
& Davis (1974) who, for computational reasons, introduced a second boundary
located several Stokes layer thicknesses away from the moving wall. No unstable
modes were found at Reynolds numbers up to about 400. Hall (1978) investigated
the problem in a semi-infinite fluid layer using the method of Seminara & Hall (1975)
and found no unstable modes up to Reynolds numbers of about 160. The stable
modes found by Hall were found to exist only over finite ranges of the wavenumber
and the modes entered the continuous spectrum at the endpoints of these ranges.

It has been known for a long time (von Kerczek & Davis 1974; Cowley 1987)
that the instantaneous profiles of a Stokes boundary layer can be massively unstable
at Reynolds numbers at which there are no unstable Floquet modes. Cowley (1987)
investigated the problem at high Reynolds numbers and found various unstable
eigenvalues of the instantaneous Rayleigh equation which is the leading-order
approximation to the linear stability problem at high values of the Reynolds number.
However, since the modes found by Cowley did not have growth rates periodic
in time, none of his solutions could be used to construct Floquet modes. More
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recently, Blennerhassett & Bassom (2002) extended the calculation of Hall (1978) to
much higher Reynolds numbers and they conclude that the Stokes layer becomes
linearly unstable at a Reynolds number of about 708. This extension is non-trivial
because the method of Hall is essentially a power series solution in Reynolds number
and Blennerhassett & Bassom (2002 hereinafter referred to as BB) needed to use
128 bit arithmetic in order to retain sufficient accuracy at numerically larger values
of the Reynolds number. The neutral curve found by the latter authors is open in the
wavenumber–Reynolds number plane which suggests that unstable Floquet modes
should exist for larger Reynolds numbers. This apparent inconsistency between the
results of these authors and those of Hall (1978) and Cowley (1987) is investigated
here.

The procedure adopted in the rest of the paper is as follows. In § 2 we give a
brief derivation of the inviscid eigenvalue problem and show how the local modes
appropriate to this limit could in principle reduce to Floquet modes. In § 3 we discuss
our numerical results obtained by solving the Rayleigh equation and discuss the ‘birth’
and ‘death’ of various modes. The role of free-stream disturbances is also discussed
in that section. Finally, in § 4 we draw some conclusions.

2. Formulation of the stability problem
Our concern is with the instability of the flow adjacent to the fixed rigid wall

defined by y = 0 when an oscillatory pressure gradient in the x-direction drives a
unidirectional flow − U0 cos ωt at large distances from the wall. Here, ω is a frequency,
t denotes time and if ν is the kinematic viscosity of the fluid then the velocity of the
flow is given by

u = U0{uB(Y, T ), 0}, uB = cos(T − Y )e−Y − cos T ,

where T = ωt and (X, Y ) = (x, y)/(2ν/ω)1/2. The Reynolds number for the flow is
defined by

R =
U0

√
2√

νω
,

and we will be primarily concerned with the limit R → ∞. We will only give a brief
description of formulation of the instability problem here (see Hall 1978 for more
details).

Following Hall (1978), it is easy to show that a perturbation to the above flow
satisfies the unsteady Orr–Sommerfeld equation〈

uB − 2

iαR

∂

∂T

〉
〈ψYY − α2ψ〉 − uBYY ψ =

1

iαR

〈
∂2

Y − α2
〉2

ψ,

ψ = ψY = 0, Y = 0, ∞.

 (2.1)

Here, α is the wavenumber of the disturbance which we will assume to be real. The
stream function ψ is a function of Y and T and Floquet solutions of (2.1) are of the
form

ψ = eµT ψ̂(Y, T ), ψ̂(Y, T + 2π) = ψ̂(Y, T ).

Hall (1978) found only stable Floquet solutions (µr < 0), but recently BB, using
exactly the same solution procedure as Hall (1978), found a finite band of unstable
wavenumbers for R greater than about 708. The neutral curve found by BB is ‘open’
at the larger values of R used in their calculations so we would expect instability to
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be present in the inviscid limit R → ∞. The latter limit was investigated by Cowley
(1987) who found local instabilities but no Floquet solutions of the problem. Our
calculations complement those of Cowley and suggest the origin of the disturbances
which are known experimentally to cause transition to turbulence in Stokes layers;
see for example Clamen & Minton (1977).

For large Reynolds numbers, we seek a solution of (2.1) by writing

ψ =

{
ψ0(Y, T ) +

1√
R

ψ1(Y, T ) + ...

}
exp

{
1
2
R

∫ T

Ω(τ ) dτ

}
, (2.2)

where we have anticipated that viscous effects will drive the O(1/
√

R) term above
and the factor of 2 in the exponential has been introduced for convenience. If we
define Ω = −iαc (T ) then the local wavespeed c, assumed to be complex, satisfies the
Rayleigh instability problem

(uB − c)(ψ0YY − α2ψ0) − uBYY ψ0 = 0, ψ0 = 0, Y = 0, ∞. (2.3)

We note that if we can compute c (T ) as a continuous function of T over one period
then it corresponds to a Floquet solution of (2.3) only if

c(T + 2π) = c(T ),

and the Floquet exponent µ is then given by

µ =
−iαR

4π

∫ 2π

0

c(T ) dT . (2.4)

Cowley (1987), in his investigation of (2.3), was unable to locate such Floquet modes.
The Rayleigh problem (2.3) must be solved numerically and, in order to navigate
around any critical layers in the appropriate manner, we choose to integrate (2.3) in
the complex plane along the contour defined by

ζ = θ + iγ θu′
B(θ) (0 < θ < ∞).

Here, a prime denotes differentiation with respect to θ and γ is a negative constant
chosen for convenience. It was also found useful in cases where the eigenfunction is
concentrated near the wall to work on a stretched grid defined by

φ =
2

π
tan−1 θ with 0 < φ < 1.

If (2.3) is discretized using central differences on a uniform grid in θ or φ, we obtain
a generalized eigenvalue problem of the form

(A − cB)V = 0. (2.5)

The global spectrum of (2.5) was found using a NAG routine whilst individual
eigenvalues were followed by augmenting (2.5) with

dc

dθ
= 0 or

dc

dφ
= 0,

and using Newton iteration. The global spectrum calculated will contain both
approximations (for a given grid size) to eigenvalues c of (2.3) and spurious eigenvalues
associated with the discretization. The constant γ was taken to be −0.1 in most of the
calculations, though for eigenfunctions concentrated near the wall, somewhat larger
values of γ were used.
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Figure 1. The global eigenvalue spectrum for α = 0.4, γ = − 0.1 and 600 grid points.

3. Results
Figure 1 shows the spectrum of (2.5) for the case α = 0.4, γ = −0.1, T = π

and 600 grid points (on the unstretched grid), respectively, with ‘infinity’ taken to
be 10. At this value of t , the free-stream speed is 1, so we note the apparently
large number of eigenvalues which have the real part of c close to this value. Our
calculations reproduced the results of Cowley (1987) where checks could be made.
Cowley reported that for a critical value of α close to α = 0.53, two eigenvalues
coalesced. In fact, this value of α, which we hereinafter denote by αc, delineates two
distinct types of behaviour of the spectrum.

3.1. The spectrum for 0 <α <αc

In order to illustrate the behaviour of the spectrum in this regime we shall in the first
instance concentrate on the case α = 0.2. Figure 2 shows the wavespeed cr and growth
rate ci for α = 0.2 and − 3

4
π < T < π of the mode corresponding to the single unstable

mode of figure 1. Note that we could start our calculations with any of the discrete
non-spurious modes of figure 1 since the modes will be seen to connect when time is
varied. (See also figure 3 for the evolution of cr and ci with T .)When T decreases from
π the disturbance becomes increasingly unstable until a maximum of the growth rate
is achieved when T � 1, after which the disturbance becomes stable. After a short
interval of instability near T � −1.7, the disturbance again becomes stable. When
T → >− 3

4
π, the real and imaginary parts of c approach zero and the disturbance

becomes concentrated near the wall. In this limit, viscous effects become important
and this will be discussed in more detail later. If T is increased from π, the growth rate
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Figure 2. (a) The evolution of the eigenvalues of (2.5) for α = 0.2. (b) The evolution near
the origin of the eigenvalues of (2.5) for α = 0.2.
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Figure 3. (a) The quantity cr as a function of T for α = 0.2. (b) The quantity cr as a
function of T for α = 0.2.
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decreases monotonically to zero whilst the wavespeed asymptotes to the free-stream
speed. We also notice that, since uB(y, T ) = uB(y, T +2π), uB(y, T ) = −uB(y, T + π),
the results shown in figure 2 can be used to generate families of eigenvalues using the
relationship c(T + π) = −c̄(T ), c(T + 2π) = c(T ).

Using the above result, after first continuing the calculation of c for T > π, we
construct figures 3(a) and 3(b) which show cr and ci over a range of values of t . The
arrow shows the curve which defines the free-stream speed at each instant in time.
The key features illustrated in this figure are:

(i) A stable eigenvalue emerges out of the origin in the complex c plane each time
the wall shear vanishes (i.e. when T = 1

4
π + nπ, n = 0, ±1, ±2, . . .).

(ii) Each eigenvalue emerging from a time when the shear vanishes is initially
stable, then has a small region of instability before ultimately becoming unstable for
all time greater than a critical value.

(iii) The growth rate of any disturbance tends to zero from above for large times.
We also remark that for each eigenvalue the free-stream speed coincides with

the wavespeed of the disturbance at just one value of T and that the growth rate
is negative at these times. If we were solving the Orr–Sommerfeld equation, this
would alert us to the possibility of a continuous spectrum, but the inviscid problem
has no such spectrum. However, the inviscid problem must be thought of as the
limit of the viscous one when R → ∞, so the point requires further investigation.
We will return to this matter later. Figure 3 shows that the mode emanating from
T = 1

4
π + nπ, n = ±1, ±2, . . . becomes the fastest growing mode over an interval

of length π and remains unstable for large times but with an exponentially small
growth rate. Thus, at large times, the mode might be relevant if transition is caused
by free-stream disturbances, but otherwise in any time interval of length π, the mode
emanating from the latest time when the wall shear vanished will dominate.

In figure 4, we show the eigenfunctions associated with some of the eigenvalues
shown in figure 2. The eigenfunctions shown have been normalized by their maximum
absolute value. We observe that the eigenfunctions are initially located near the wall
and then drift outwards. Further increases in T show that the outward drift continues
monotonically.

3.2. The spectrum for α > αc

In figures 3(a) and 3(b), we can see that there are values of T , Tc and Tr, close to π
and 1

2
π when the two most unstable eigenvalues have their real or imaginary parts,

respectively the same. When α is increased from 0.2, the times Tr and Tc approach
each other and coalesce when α = αc � 0.53. The spectrum for α > αc then takes on
a different form because of this coalescence of eigenvalues at α = αc. The subsequent
splitting of the eigenvalues leads to the generation of a Floquet mode with c now
a periodic function of time. In addition, there remains a mode which originates at
the wall each time the wall shear vanishes. This mode eventually becomes unstable
but, like the modes for α < αc, the growth rate of the modes tends to zero for large
T and the wavespeed approaches the free-stream speed. We note, however, that the
non-Floquet mode no longer intersects with what would be a continuous spectrum
of the viscous problem.

Figures 5(a) and 5(b) show the quantities cr and ci for the Floquet and non-Floquet
modes when α = 0.56. Figures 5(c)–5(f ) show the dependence of these quantities on
time. The free-stream speed is also shown in figures 5(c) and 5(e). The eigenfunctions
associated with the modes which originate when the wall shear vanishes are similar
to those shown in figure 4 with the eigenfunction drifting further and further from
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Figure 4. The eigenfunctions for α = 0.2, (a) T = −2, (b) 0 and (c) 2.

the wall as T increases. The eigenfunctions associated with the Floquet mode are
shown in figure 6, we see that this mode stays within the boundary layer.

The Floquet exponent of the Floquet mode is we recall defined by (2.4). Figure 7
shows µi/R as a function of α for α > αc. We see that all the modes are stable and
that the least stable mode has α = αc.

The modes originating from T = 1
4
π + nπ, n an integer, for any value of α do not,

of course, form Floquet modes since c in this case is not a periodic function of T .
However, for each such mode, we can define a ‘lifetime growth’ exponent defined by

G = −
∫ ∞

π/4

iαci(T ) dT .

(The integral converges since we shall see later that ci → 0 exponentially when T → ∞).
Note here that G is the same for any of the modes originating from T = 1

4
π + nπ.

Figure 8 shows G as a function of α for this type of mode. The mode which has the
largest growth corresponds to α � 0.25 and we note that the modes for sufficiently
large wavenumbers lead to no net growth. The above discussion suggests strongly
that there are no unstable Floquet solutions of the Stokes layer instability problem
at large R.

3.3. The origin of the inviscid modes

Now let us give a brief discussion about the nature of the ‘birth’ of the inviscid modes
at T = 1

4
π + nπ and their large time behaviour. For definiteness, consider the mode

which originates at T = 1
4
π for a given value of α. In the neighbourhood of T = 1

4
π,
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Figure 5. The eigenvalue for (a) the non-Floquet mode and (b) the Floquet mode when
α = 0.56. (c) The real part of c and (d) the imaginary part of c as functions of T for the
non-Floquet mode when α = 0.56. (e) The wavespeed of the Floquet mode when α = 0.56.
( f) The imaginary part of c for the Floquet mode when α = 0.56.

the basic velocity profile near the wall takes the form

uB =
√

2
{(

T − 1
4
π
)
Y − 1

2
Y 2 + . . .

}
so that there is flow reversal near the wall for T → 1

4
π+ and a monotonically decreasing

profile near the wall for T slightly less than 1
4
π. It follows that viscous effects enter the
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Figure 6. The eigenfunctions for α = 0.56, (a) T = 1, (b) 2 and (c) 3.
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problem for T − 1
4
π =O(R−1/4), Y = O(R−1/4) and that in this time regime c should

be expanded as

c = R−1/2c1(τ ) + . . . , with τ =
(
T − 1

4
π
)
R1/4.

The details of the above expansion are straightforward so we do not give them
here. We note only that c1(τ ) above may be found to obtain a match with the
inviscid solution when τ → ∞. Further, we note that c1 ∼ |τ |2/3 when τ → −∞ so that
c ultimately becomes O(R−1/6), the wavespeed for a stable viscous wall mode. At later
stages, critical layers away from the wall develop and the situation becomes more
complex. The main point is that the mode remains viscous and stable and does not
re-enter the inviscid spectrum.

3.4. The end stages of the inviscid modes

We have seen above that the modes which emerge from T = 1
4
π + nπ eventually

become unstable for all time on the basis of inviscid theory and move further and
further away from the wall whilst the wavespeed approaches the free-stream speed.
Cowley (1987) has given an asymptotic structure for these modes, previously Tromans
(1979) had suggested that they had exponentially small growth rates for large time.
For large T , Cowley shows that

c = − cos T + c0 exp [−T − 2nπ] + . . .

and

c = − cos T − c0 exp [−T − 2nπ − π] + . . .

where c0 is a function of α with positive imaginary part and n is a large integer. The
modes are concentrated in a layer of thickness O(1) at a distance | log ε| from the
wall where

log ε−1 = 2nπ + Y0 (0 � Y0 � 2π).

The modes decay exponentially in amplitude in both directions away from the layer.
We expect that viscous effects associated with the boundary layer of thickness

R−1/2 at the wall will lead to O(R−1/2) corrections to the growth rate, so we might
anticipate that the modes will be ultimately stabilized. Here we have assumed that,
as is the case for inviscid instabilities of steady flows, viscous effects are stabilizing.
However, we should also note that, if the growth rate at leading order is tending
to zero exponentially, the quasi-steady approximation will itself fail at large times.
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In particular, if exp [−T − 2nπ] = O (1/R), then the WKB formulation fails and we
return to a fully unsteady partial differential equation to describe the modes. We can
derive the appropriate equation directly from (2.1). We write

T = | log R| + s, | log R| + ζ = Y, ψ = exp
(
− 1

2
Riα sin T

)
Ψ0(ζ, s) + . . . ,

substitute into (2.1) with Y replaced by ζ + log R and retain leading-order times to
give (

û(ζ, s) − 2

iα

∂

∂s

)
(Ψ0ζ ζ − a2Ψ0) − ûζ ζΨ0 =

1

iα

(
∂2

ζ − α2
)2

Ψ0, (3.1)

with û = cos(s − ζ )e−ζ , which must be solved subject to

Ψ0 → 0, |ζ | → ∞. (3.2)

Thus, in a frame of reference moving with the free stream, we simply recover the
original evolution equation extended to an infinite domain with Reynolds number
of unity. If the limit s → −∞ is taken in (3.1) we can recover Cowley’s large-time
inviscid mode structure. Equations (3.1) and (3.2) will have Floquet solutions of the
form

Ψ0 = eηsΨ̂0 (ζ, s) , Ψ̂0 (ζ, s + 2π) = Ψ̂0 (ζ, s) , (3.3)

which could, in principle, be solved for using the method of Hall (1978). However,
if such modes exist, they would emerge as the large s structure of an arbitrary
disturbance imposed on the flow at some initial value of s. In order to investigate
that possibility we integrated (3.1) using the numerical scheme of Hall (1983) subject
to the conditions

Ψ0 = 0, |ζ | → ∞, Ψ0 = β(ζ ), s = 0,

for some initial distribution β (ζ ) . In order to measure the growth or decay of Ψ0 we
computed

I (α, s) =

∫ ∞

−∞
|Ψ0|2 dζ.

Figure 9 shows J = log(I (s = 2nπ)/I (s = 2[n − 1]π)) for different values of α with
an initial perturbation β (ζ ) = (1 + sin ζ )e−ζ 2

. We see that for large s, J tends to a
negative constant, indicating that the disturbance has taken on the form of a stable
Floquet mode of (3.1). The calculation was repeated with different initial conditions
and J was found to approach the same negative constant, We conclude that the
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unstable modes which originate at the times when the wall shear vanishes, gradually
move out towards the edge of the boundary layer where at large times their growth
rates decay to zero and viscous effects come into play. In fact, the modes go through
an interval where they are genuinely unsteady before emerging as stable Floquet
solutions. These new Floquet modes are trapped outside the boundary layer and are
not related to the Floquet solutions of figure 5.

3.5. Inviscid modes and the continuous spectrum

The inviscid problem (2.3) for large values of Y reduces to

ψ0YY − α2ψ0 = 0,

so that, for real wavenumbers, α the disturbance necessarily decays exponentially and
there can be no continuous spectrum. However, the inviscid modes do not satisfy the
no-slip condition at Y = 0, so that if higher-order terms in (2.2) are retained then the
possibility of a continuous spectrum will again exist.

Suppose then that we have a stable eigenmode of (2.5) and that the wavespeed of
the mode is equal to the free-stream speed. Note that we have anticipated here the
usual result that continuous spectrum modes are convected along with the free-stream
speed outside the boundary layer. It is expected that viscous effects will produce an
O(R−1/2) correction to the wavespeed so we expand

c = c0 +
c1

R1/2
+ . . .

and retain the expansion (2.2). At order R−1/2, we find that ψ1 satisfies

(uB − c0)(ψ1YY − α2ψ1) − uBYY ψ1 = c1(ψ0YY − α2ψ0). (3.4)

Near the wall, we write

ς = R1/2Y,

and, since ψ0 = 0, Y = 0, we replace (2.2) by

ψ =
[
Ψ1 (ς, T ) R−1/2 + . . .

]
exp

{
1
2
R

∫ T

Ω (τ ) dτ

}
.

The function Ψ1 is then found to satisfy

−c0Ψ1ζ ζ =
1

iα
Ψ1ζ ζ ζ ζ , Ψ1 = Ψ1ζ , ζ = 0, Ψ1˜ζψ0Y (0, T ) , ζ → ∞.

Hence, Ψ1 is given by

Ψ1 = ψ0Y (0, T )

{
ζ +

exp(−
√

iJζ )√
iJ

− 1√
iJ

}
,

with J = J (T ) = −αc0. It follows that (3.4) must be solved subject to

ψ1 = −ψ0Y (0, T )√
iJ

, Y = 0, ψ1 → 0, Y → ∞. (3.5)

The system (3.4)–(3.5) will only have a solution if a consistency condition is satisfied.
This condition fixes c1 = c1 (T ) and, in general, c1 will be complex. Thus, at any time
T , there is an O(R−1/2) viscous correction to the growth rate and wavespeed.

We note that the above discussion has not been dependent on the matter of whether
or not there is a continuous spectrum at time T . However, it is trivial for us to locate
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the continuous spectrum by matching exponentially small terms in our expansion
procedure. We note that the exponentially decaying part of Ψ1 will generate a rapidly
decaying viscous term in the main part of the boundary layer. The viscous solutions
of (2.1) for Y = O(1) varying on a lengthscale O(R−1/2) take the form

ψ = exp

∫ Y

N (Ỹ ) dỸ , (3.6)

with

N2 = iαR {uB (Y, T ) − c} . (3.7)

The branch of the square root is taken to match onto the exponentially decaying part
of Ψ1 and, since N2 � −iα

√
Rc1 for Y 
 1, we find that ψ is ultimately oscillatory in

the free stream when −iα
√

Rc1 is real and negative. This will not, in general, be the
case, but if we now allow T to vary by an amount O(R−1/2) and write

T = T ∗ = T 0 + R−1/2T + . . . (3.8)

it follows that we have oscillatory behaviour of ψ for large Y if

T = − c1R(T )

uBT (∞, T )
. (3.9)

Hence, whenever an eigenvalue of (2.4) has cr = uB (∞, T ) , and ci < 0 at T = T 0 there
is a time within R−1/2 of T 0 when the inviscid mode produces an oscillatory response
in the free stream corresponding to a continuous spectrum. However, it follows
from (3.6) that the oscillatory response in the free stream is of size O(exp(−QR1/2))
compared to ψ0 where

Q =

{∫ ∞

0

〈iα [uB − c]〉1/2
dY

}
r

. (3.10)

This is in contrast to the situation at finite Reynolds numbers for steady boundary
layers (e.g. Grosch & Salwen 1978), where the disturbance in the free stream and
boundary layer are of comparable size.

Thus, at time T ∗, the inviscid mode has an eigenfunction of size O(1) in the main
part of the boundary layer and an oscillatory tail of size | exp (−QR1/2)| outside the
boundary layer.

Now let us contrast this behaviour with the form of the continuous spectrum
eigenfunctions present at an arbitrary time T . We first note that, ψc, a decaying
solution of (2.1) of the form given by (2.2), but with no boundary conditions imposed
at Y = 0, can be found. In addition, two rapidly growing viscous modes of the form

ψ = exp

∫ Y

0

N (Ỹ ) dỸ

{
ψ̂0 +

1√
R

ψ̂1 + . . .

}
, (3.11)

where N is given by (3.7) may be found. If we denote the exponentially growing and
decaying solutions of this type by ψg and ψd and combine them with ψc to give

ψ = ψc + Aψg + Bψd,
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then the constants A and B may be chosen such that ψ = ψY = 0 and if ψc �= 0, Y = 0,
these constants will be O(1). If c is chosen such that

c = uB (∞, T ) − iλ2

where λ is a real contrast, then both solutions given by (3.11) are oscillatory at large
Y , but ψg will be O| exp (R1/2Q)|. Thus, the continuous spectrum eigenfunction is
concentrated outside the boundary layer, unlike the inviscid mode which crosses the
continuous spectrum at T = T ∗. It is for this reason that the mode remains distinct
and exists either side of that interaction. This is in contrast with the corresponding
behaviour at finite R. Finally, in this section, we point out that there is also the
possibility of a continuous spectrum associated with disturbances not propagating
in the free-stream direction. These modes are discussed in Shrira & Sazonov (2001)
but are not relevant to the discussion here because the modes discussed here do
not intersect with that continuous spectrum. The author wishes to thank one of the
referees for making this observation.

4. Conclusions
Our investigation suggests there are no unstable Floquet modes of the Stokes layer

stability problem at high Reynolds numbers. This suggests that for the neutral curve
found by BB to exist, Reynolds numbers greater than about 700 must close at a
higher value of R.

We have seen that if αc >α, locally unstable non-Floquet modes originate from the
viscous spectrum at times T = 1

4
π + nπ and cross the viscous continuous spectrum

once quite soon after their birth. When α > αc, the non-Floquet mode is generated
at the same value of T , but no longer crosses the continuous spectrum. In fact,
when α > αc, the Floquet mode crosses the continuous spectrum. In a controlled
experiment, the background disturbance level will be small, but we would expect that
it will always be sufficiently large to stimulate the locally unstable inviscid mode with
the largest growth rate. In an experiment, an obvious source for disturbances will be
imperfections of the wall, so the modes which originate near the wall when the wall
shear vanishes will be selectively stimulated. In addition free-stream disturbances can
selectively stimulate the non-Floquet mode αc > α and the Floquet mode for α > αc

at any time when the mode crosses the continuous spectrum. Of course, nonlinear
effects will become important after sufficient linear growth and the present theory is
no longer relevant. The lifetime growth G was shown in figure 8 as a function of
α. We see that the mode with the maximum value of G is α � 0.25, so we would
expect that this mode would be the one most likely to be observed experimentally.
However, if the free-stream disturbances are the source of unstable modes which
ultimately lead to transition, it is more instructive to compute the total growth of a
mode once it has crossed the continuous spectrum. In fact, as shown in figure 8, there
is virtually no difference in G computed from the birth of a mode and its intersection
with the continuous spectrum. The different experimental investigations of the Stokes-
layer problem have not reported the wavenumbers associated with local transition to
turbulence, so we are unable to compare our predictions with experiment.

The author would like to thank the referees for their helpful comments on the first
draft of this paper. Finally, we would like to thank Dr S. Cowley for some helpful
discussions and Professors M. Hussaini and D. Furbish at Florida State University
for their hospitality whilst part of this work was carried out.
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Hall, P. 1983 The linear development of Görtler vortices in growing boundary layers. J. Fluid
Mech. 130, 41–58.

von Kerczek, C. & Davis, S. H. 1974 Linear stability theory of oscillatory Stokes layers. J. Fluid
Mech. 62, 753–773.

Seminara, G. & Hall, P. 1975 Centrifugal instability of a Stokes layer: linear theory. Proc. R. Soc.
Lond. A350, 299–316.

Shrira, V. I. & Sazonov, I. A. 2001 Quasi-modes in boundary-layer-type flows. Part 1. Inviscid
two-dimensional spatially harmonic perturbations. J. Fluid Mech. 446, 133–171.

Tromans, P. S. 1979 Stability and transition in periodic pipe flows. PhD Thesis, Cambridge
University, Engineering Dept.


